Solution for the exercises 1

Results from 1.1.1.

Your desktop should look similar to this:

Results from 1.1.2.

Results from 1.1.3.

After running the model, the GAMS-IDE should look similar to this ${ }^{1}$:

Results from 1.1.4.

In our simple example, the report on the variables should be as follows :

	LOWER	LEVEL	UPPER	MARGINAL
- VAR X1	- INF	3.0000	+INF	
VAR X2	- INF	5.0000	+INF	
- VAR Y	-INF	8.0000	+INF	
X1	Explanatory	the mea	X1	
X2	Explanatory	the mea		
Y	Explanatory	the mea		

Therefore, the optimal values for variables $\mathrm{X} 1, \mathrm{X} 2$ and Y are 3,5 and 8 respectively. Note that none of the variables has an lower or upper bound. INF means infinity, so the variables can take infinitely large and small values. The marginal value of all variables is zero, which confirms that the solution found is optimal.

[^0]
Results from 1.1.5

Removing the semi-colon from equation QX1 results in the following window:
At the end of the listing file the list of errors are explained:
"409 Unrecognizable item - skip to find a new statement; looking for a ';' or a key word to get started again" is displayed.

Results from 1.1.6.

The problem is UNBOUNDED, because you can keep lowering the value of Y by lowering $X 1$. Remember that $X 1$ should be less than A, not equal to. So $X 1$ can get any value below 3 . Consequently, Y can get any value below 8 . The minimum is then minus infinity; GAMS reports this as unbounded.
The listing file gives the following solve summary:

```
**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 3 UNBOUNDED
```


Results from 1.1.7.

The results for the variables when the tax rate (tax) equals 30 is:

	LOWER	LEVEL	UPPER	MARGINAL
VAR DAMAGE	-INF	6000.0000	+INF	.
VAR ST_RATE	-INF	0.5000	+INF	.
VAR CATTLE	-INF	500.0000	+INF	.
VAR OBJ	- INF	4000.0000	+ INF	.

For $\operatorname{tax}=20$, obj equals 6000; for $\operatorname{tax}=10$, obj equals 6000 and for $\operatorname{tax}=0$, obj equals 4000 ; the optimal value of tax is 15 , when obj equals 6250.

Make sure that you use the explanatory text.

Results from 1.1.8.

The values of $X 1$ and Y should be identical to the earlier exercises: 3 and 8, respectively. Did you think of removing the equation declaration and the equation definition for QX2?

The full model for emissions can look like this:

```
PARAMETERS
    coef Emission coefficient CO2
    OTHER Emissions of other greenhouse gasses;
    Coef=0.03;
    OTHER=5;
VARIABLES
    C02 Emissions of CO2
    PRD Production quantity
    EMIS Total emissions of greenhouse gasses;
EQUATIONS
    QPRD Equation for economic production
    QCO2 Equation for CO2 emissions
    QEMIS Equation for total climate emissions;
QPRD.. PRD =G= 100;
QCO2.. CO2 =E= coef*PRD;
QEMIS.. EMIS =E= CO2+OTHER;
MODEL CLIMATE /ALL/;
SOLVE CLIMATE USING DNLP MINIMIZING EMIS;
```

With solution:

	LOWER	LEVEL	UPPER	MARGINAL
--- VAR EMIS	-INF	8.000	+INF	.
--- VAR CO2	-INF	3.000	+INF	.
--- VAR PRD	- INF	100.000	+INF	.

[^0]: ${ }^{1}$ If you use a different solver than Minos, the process window will look different, but the same essential information is displayed.

